Microglia in the spinal cord and neuropathic pain

نویسنده

  • Makoto Tsuda
چکیده

In contrast to physiological pain, pathological pain is not dependent on the presence of tissue-damaging stimuli. One type of pathological pain - neuropathic pain - is often a consequence of nerve injury or of diseases such as diabetes. Neuropathic pain can be agonizing, can persist over long periods and is often resistant to known painkillers. A growing body of evidence shows that many pathological processes within the central nervous system are mediated by complex interactions between neurons and glial cells. In the case of painful peripheral neuropathy, spinal microglia react and undergo a series of changes that directly influence the establishment of neuropathic pain states. After nerve damage, purinergic P2X4 receptors (non-selective cation channels activated by extracellular adenosine triphosphate) are upregulated in spinal microglia in a manner that depends on the transcription factors interferon regulatory factor 8 and 5, both of which are expressed in microglia after peripheral nerve injury. P2X4 receptor expression on the cell surface of microglia is also regulated at the post-translational level by signaling from CC chemokine receptor chemotactic cytokine receptor 2. Furthermore, spinal microglia in response to extracellular stimuli results in signal transduction through intracellular signaling cascades, such as mitogen-activated protein kinases, p38 and extracellular signal-regulated protein kinase. Importantly, inhibiting the function or expression of these microglial molecules suppresses the aberrant excitability of dorsal horn neurons and neuropathic pain. These findings show that spinal microglia are a central player in mechanisms for neuropathic pain, and might be a potential target for treating the chronic pain state.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of nimesulide on CoxII expression in central and peripheral immune cells (microglia and macrophage) in a rat model of neuropathic pain

Introduction: Neuropathic pain may be due to a primary insult to the peripheral or central nervous system. In this situation, Hyperalgesia and Allodynia are the results of prostaglandins and cytokines release in the spinal cord. It seems that immune cells play an importat role in the induction and maintenance of chronic pain. Compared to selective CoxII inhibitors, nimesulide, a highly select...

متن کامل

Paroxetine Attenuates the Development and Existing Pain in a Rat Model of Neurophatic Pain

Background: P2X4 receptor (P2X4R), a purinoceptor expressed in activated spinal microglia, plays a key role in the pathogenesis of neuropathic pain. Spinal nerve injury induces up-regulation of P2X4R on activated microglia in the spinal cord, and blockade of this receptor can reduce neuropathic pain. The present study was undertaken to determine whether paroxetine, an inhibitor of P2X4R, could ...

متن کامل

P2X4 receptors and neuropathic pain

Neuropathic pain, a debilitating pain condition, is a common consequence of damage to the nervous system. Neuropathic pain is often resistant to currently available analgesics. A growing body of evidence indicates that spinal microglia react and undergo a series of changes that directly influence the establishment of neuropathic pain states. After nerve injury, P2X4 receptors (P2X4Rs) are upreg...

متن کامل

Minocycline treatment inhibits microglial activation and alters spinal levels of endocannabinoids in a rat model of neuropathic pain

Activation of spinal microglia contributes to aberrant pain responses associated with neuropathic pain states. Endocannabinoids (ECs) are present in the spinal cord, and inhibit nociceptive processing; levels of ECs may be altered by microglia which modulate the turnover of endocannabinoids in vitro. Here, we investigate the effect of minocycline, an inhibitor of activated microglia, on levels ...

متن کامل

Minocycline Effects on IL-6 Concentration in Macrophage and Microglial Cells in a Rat Model of Neuropathic Pain

Background: Evidence indicates that neuropathic pain pathogenesis is not confined to changes in the activity of neuronal systems but involves interactions between neurons, inflammatory immune and immune-like glial cells. Substances released from immune cells during inflammation play an important role in development and maintenance of neuropathic pain. It has been found that minocycline suppress...

متن کامل

High-resolution transcriptome analysis reveals neuropathic pain gene-expression signatures in spinal microglia after nerve injury.

Microglial cells, the resident immune cells of the spinal cord, become activated in response to peripheral nerve injury. Microglia activation contributes to the development of neuropathic pain. Here we employed microarray analysis of individually collected pools of 10 spinal microglia cells to identify changes of levels and cell-to-cell expression variance of microglial genes during their activ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016